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The heat transfer characteristics are established on the basis of an
analytic solution and experimental data. Relations are given for deter-
mining the axial heat flow along the gas-cooled neck.

We will consider a vessel containing the rising va-
pors of a cryogenic liquid. The top of the neck is at
the temperature of the ambient medium Ty, and the
bottom at the temperature of the cryogenic liquid Ty,.
The temperature of the gas at the inlet to the neck is
also equal to Ty,. The heat flow along the neck is de-
termined by the temperature difference between its
ends, the heat transfer to the outer surface through
the layer of insulation from the ambient medium, and
the heat exchange between the inner surface of the
neck and the rising vapors.

The results of theoretical studies of the heat trans-
fer in a neck are presented in [1—3]. In formulating
the problem the authors neglect the heat transfer at
the outer surface of the neck and assume that the heat
exchange between the gas and the wall is perfect, i.e.,
Ty = Tg. In most cases the assumptions are too crude
and the calculated values of the axial heat flows are in
poor agreement with the experimental data [4].

We have solved this problem on the following as-—
sumptions:

1. The thermal conductivity of the neck material,
the physical properties of the gas, and the thermal
conductivity of the insulation at the outer surface of
the neck do not depend on temperature.

2. The coefficient of heat transfer between the walls
of the neck and the gas is assumed given and constant
along the length.

3. There is no axial heat conduction through the
gas,

The heat conduction equation for the walls of the
neck and the energy equation for the gas flow now take
the form
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The boundary conditions can be written as follows:
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We introduce the dimensionless variables
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Using (8)—(9), we reduce Egs. (1) and (2) to dimen-
sionless form:
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with boundary conditions

X =0, B0,=0, (12)
X=—1, 0,=1, (13)
X=—1, Qg=1. (14)

Equations (10) and,(11) can be reduced to a normal
system of three first-order linear homogeneous equa-
tions. Solving this system by the usual techniques, we
obtain the following relations:

0, = Crexp (v1 X) + Caexp(v2 X) + Caexp(vsX), (1)
0y = Cyay exp (v, X) -+ Cata €xp (2 X ) + Caazexp (ys X),(16)

where
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and the values of y are determined from the character-
istic equation
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At B2/H < 0.4 approximate values of the roots of Eq.
(18} can be determined from the formulas
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The values of the constants in (15) and(16) are found
from boundary conditions (12)—(14).
In most cases of practical importance

exp (va) K 1, (21)
Yzexp (— ’Y2} << 1. (22)
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With these conditions Eq. (15) takes the form
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In the section x = —L the dimensionless heat flow
along the neck
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Given % < 0.1 and assumptions (21) and (22), we can
'neglect the heat transfer at the outer surface of the
neck. In this case

Q - Yo . (25)

Qr exp (vs) — 1

In [1] the following relation is given for the case of
perfect heat transfer:

Q  exp(H)—I

The external forms of Eqs. (25) and (26) are per-
fectly analogous, but the factors associated with con~
vective heat transfer are taken into account by intro-
ducing the quantity vy, instead of the parameter H.

Solving Egs. (1) and (2) for the case of perfect heat
transfer, we obtain the following relation for determin-
ing the heat flow along the neck:

_%L_ = Acth(4) — 0.5 H, (27)

T

Q A . (26)

where

A= VO5H? T p.

When 8 = 0, Eq. (27) reduces to Eq. (26).
Using {12), (15), and (16), we can determine the
temperature difference between the gas and the walls

602

at the "hot" end of the neck at X = 0. With assump-
tions (21) and (22) we have
To—'TgO

Gy = 0280
T T —Ty

- A+ vy K exply) (28)

[1+ £ ][1~eXp(v1—vz)]

2

On the basis of the relations obtained we arrive at
the following conclusions:

a) at 8 > 1 heat transfer at the outer surface of the
neck leads to a considerable increase in axial heat
flow;

b) in the case of effective heat transfer between
the gas and the walls, as the gas flow rate increases
the heat flow along the neck tends to a minimum value,
at which it ceases to depend on the gas flow rate.

This minimum value of theheat flux is approximately
equal to

lim ({23_) —K {% + exp(—K). (29)

To check these relations we carried out experiments
on a special apparatus (Fig. 1).

The apparatus was so designed that it was possible
to determine directly the heat flow along neck 6 from
the vaporizability of the cryogenic liquid in control
chamber 1. Protective chamber 2, filled with the same
cryogenic liquid as the control chamber, was provided
to take care of secondary heat fluxes.

The experimental data for liquid nitrogen and hydro-
genarepresented in Fig. 2 for aneckmade of Cr18Nil0Ti
steel with dimensions DX 6 = 18X 0.3 mm. As the neck
insulation we used aluminized mylar film with interme-
diate layers of glass cloth.

In the case of radiative heat transfer at the surface
of the neck the expression for g%, obtained from the
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Fig. 1. Diagram of the experimental apparatus:
1) control chamber; 2) protective chamber;

3) outer shell; 4) inner heater; 5) protective
disks; 6) neck; 7) neck heaters; 8) potentiome-
ter circuit; 9) gas counter; 10) thermocouples.
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Fig. 2. Comparison of calculated and experimental data (x in mm, T in °K): a) temperature distribu~

tion in nitrogen experiments; b) dimensionless heat flow along neck; ¢) dimensionless temperature

difference at "hot" end of neck: I) curves calculated from Egs. (23), (27), (32), and (33), respectively;

II) from Eq. (26); III) according to the data of [4]; 1) m = 0; 2) 1.5-1073 g/sec; 3) 3.53.107%; 4) 5.17-

-1078; 5) Ny, L =0.28 m; 6) N3, L = 0.28; 7) Hy, L. = 0.28; 8) Np, L = 0.12; 9) Hy, L = 0.12; 10) N, L =
= 0,12; 6—9) vacuum multilayer neck insulation; 1 and 10) high-vacuum neck insulation.

heat balance, has the form

OEyTT Dw (Tg _ T:v)

2 __ 2 (30
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As the quantity T,y it is possible to take the mean
integral temperature of the neck walls, which is ap-
proximately equal to

Tav = Tl) + (TO - TL) X

N [1 — exp {y1) 4 €xp (V1) —exp (y1 — Yz)] . (31)
Y1 Ve

Solving Egs. (29) and (30) jointly by successive ap-
proximation, we find the value of BZ.

In analyzing the experimental data the values of
the physical constants of the walls and the gas were
taken at the mean wall temperature. The axial heat
flow through the gas was taken into account by intro-
ducing instead of Awf the quantity Awf + AgF. Since in

all the experiments the gas flow was laminar, the value
of Nu was taken equal to 3.66,

At small gas flow rates the experimental data are
in good agreement with the theoretical values both with
respect to temperature distribution and with respect
to the values of the axial heat flows.

At large gas flow rates the theoretical values of
the heat flows along the neck exceed the experimental
values by 15—40% depending on the value of 8 and K.

These discrepancies are due to the assumptions
made in formulating and solving the problem.

An increase in the value of the Nusselt number has
only a very slight effect on the temperature distribu-
tion along the neck, but leads to an underestimation of
the axial heat flows.

In the experiments the parameters were varied with
in the following limits:

0.3< <10, 1<H<20,
13.5 < Kz < 480, Tav> 1000 K
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Under these conditions good agreement between the
experimental and calculated values of the heat fluxes
can be obtained if it is assumed that

S—TL =0.9 [—— Vi 4 Vo ©XP (Y1 — Va) + w%]- (32)

At B2 < 0,1 it is possible to use Eq. (25) with condi-
tions (21) and (22). The experimental values of the
temperature difference between the walls and the gas
at the hot end of the neck are well expressed by the
relation

= exp (v1)
%= (1 + 2K¥H v.) [1 —exp ('Yl—"Yz)] . (33)

The calculated and experimental data are compared
in Fig. 2.

NOTATION

T is the temperature; Q is the heat flux; m is the
gas flow rate; A is the thermal conductivity; c is the
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isobaric specific heat of the gas; f is the cross-sec-
tional area of the neck walls; F is the clear cross sec-
tion; D is the diameter; L is the length of the neck;

« is the heat transfer coefficient; € is the emissivity;

o is the Stefan-Boltzmann constant. Subscripts: w—wall;
g—gas; 0—ambient medium or section x = 0; L—cryo-
genic liquid or section x = L; in—insulation.
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